에너지연, 차세대 '나트륨' 배터리 난제 해결...'리튬' 대체 길 열어
상태바
에너지연, 차세대 '나트륨' 배터리 난제 해결...'리튬' 대체 길 열어
  • 정 현 기자
  • 승인 2023.05.11 18:57
  • 댓글 0
이 기사를 공유합니다

- 에너지연 최성훈 박사팀, 고려대 유동주 교수팀, 공동 연구 수행
- 차세대 나트륨 이온 배터리 난제 해결...나트륨 배터리 수명과 출력 높여
- 바인더의 작동 원리 최초 규명 및 향후 개발 방향에 새 지평 열어
- 논문, 재료·에너지 분야 SCI급 국제학술지 ‘Journal of Material Chemistry A’ 게재
국제학술지 'Journal of Materials Chemistry A' 3월호 표지논문에 선정된 해당 논문

[위즈뉴스] 전기자동차와 에너지저장장치의 급속한 성장으로 리튬 원자재 가격이 가파르게 상승하면서, 리튬을 대체하기 위한 여러가지 해결책이 제시되고 있다.

대체재 중 하나로 나트륨 이온 기반의 이차전지가 주목을 받고 있는 가운데, 한국에너지기술연구원(원장 김종남, 이하 ‘에너지연’)은 최근, 광주친환경에너지연구센터 최성훈 박사 연구팀이 고전압 양극 소재용 새로운 바인더 소재를 개발해 나트륨 이온 배터리의 안정성과 출력을 향상시키는데 성공했다고 밝혔다.

이번 연구결과를 담은 논문은 재료·에너지 분야의 SCI급 저명 국제학술지 ‘Journal of Materials Chemistry A(IF=14.511)’ 2월 10일자 온라인에 게재됐으며, 이 저널의 10주년 기념판인 3월호 표지논문(Inside Front Cover)으로도 선정됐다.

논문명은 'A binder-driven cathode-electrolyte interphase via a displacement reaction for high voltage Na3V2(PO4)2F3 cathodes in sodium-ion batteries'이며, 에너지연 최성훈 박사와 고려대 유동주 교수가 공동 교신저자로, 에너지연 윤대희 연구원과 송진주 연구원이 공동 주저자로 참여했다. 

연구팀의 최성훈 박사는 “이번에 개발한 바인더는 차세대 나트륨 이온 배터리 고전압 양극에 적용해 상용 PVDF 바인더 대비 우수한 배터리 성능을 구현하고, 작동 원리 규명을 통해 바인더 설계 방향에 대한 비전을 제시했다”며 “향후 나트륨 이온 배터리뿐만 아니라 다양한 고전압 기반 양극 바인더를 설계함에 있어 큰 기여가 가능할 것”이라고 말했다.

국제학술지 'Journal of Materials Chemistry A' 최근호에 게재된 해당 논문

소금의 주성분인 나트륨은 지구상에 6번째로 많은 원소로 리튬보다 440배 풍부하고 가격은 약 80배(2021년 기준) 저렴해 배터리 제작 시 단가를 큰 폭으로 낮추는 게 가능할 것으로 예상된다.

또한 리튬이온과 동일한 산화수를 갖는 알칼리 이온으로 리튬 이온전지와 작동 메커니즘이 매우 유사해 많은 주목을 받고 있다.

높은 에너지 밀도를 갖는 나트륨 전지의 양극재로 알려진 불화인산바나듐나트륨(NVPF)은 4V 이상의 고전압에서는 전해질과 부작용이 일어난다. 이때 사용되는 상용 양극 바인더인 PVDF(Polyvinylidene fluoride)는 불안정한 CEI를 형성해 양극 표면을 효과적으로 보호해주지 못한다. CEI(Cathode-Electrolyte Interphase)는 충-방전 과정 중에 양극-전해질 계면에서 형성되는 얇은 고체전해질 피막으로, 배터리의 전기화학성능 및 안정성에 큰 영향을 끼친다. 

이처럼 부작용을 효과적으로 제어하지 못하고 전해질 내 물과 반응해 플루오린화수소(Hydrogen Fluoride)를 형성하고, 플루오린화수소가 결국 양극의 구조를 공격해 구조를 붕괴시키고 성능 퇴화를 유도한다. 

이에 연구팀은 전기화학적 반응 중에 플루오린화수소 생성을 억제할 수 있는, 나트륨폴리아크릴레이트(Sodium polyacrylate) 바인더를 적용해 배터리 수명과 출력 특성을 비약적으로 향상시켰다.

연구진이 적용한 바인더는 충·방전 과정 중에 바인더의 나트륨 이온과(R-COONa) 플루오린화수소의 생성 중간체인 HPO2F2의 수소이온과의 원소교환 반응을 통해 아크릴산(R-COOH)과 NaPO2F2를 다량으로 만들어낸다.

다량으로 생성된 NaPO2F2는 나트륨 이온이 안전하고 잘 이동할 통로인 고이온전도성의 CEI를 형성하고, 양극을 효과적으로 보호해 전해질의 추가 분해를 억제시켰으며, 이를 계산과학을 통해서도 규명했다.

나트륨폴리아크릴레이트 바인더가 적용된 나트륨 이온 전지는 10C의 매우 빠른 충·방전 조건에서도 2,000사이클까지 70%의 높은 용량 유지율을 구현했으며, 30C의 매우 높은 출력조건에서는 상용 PVDF 바인더를 적용한 나트륨 전지에 비해 경우에 비해 약 5배 이상의 높은 용량을 발현하는 것을 확인했다. 

C-rate는 배터리의 충·방전 속도를 나타내며 단위 'C'로 표현하며, 1C는 전지 용량을 1시간 이내에 사용하는 것을 말하고 물리적인 의미는 `용량/시간`으로 표현한다.

연구팀은 후속 연구로 리튬 이온 배터리의 대표적인 고전압 양극소재로 알려진 LNMO에 적용 시 우수한 성능의 CEI유도 가능한 특수한 바인더를 개발 중이다. 최근 에너지 밀도를 향상시키기 위해 고전압에서 구동 가능한 상용 양극에 대한 관심이 높아지고 있는 추세로 전극 설계에 큰 기여를 할 것으로 예상된다.

 이번 연구는 에너지연 기본사업과 산업통상자원부 소재부품기술개발사업 지원을 받아 수행됐다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.
주요기사